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Abstract
In the light of the φ-mapping topological current theory, the Mermin–Ho
vortices and the monopoles in three-component spinor BEC are studied. It
is pointed out that these two topological structures respectively inhere in
two-dimensional and three-dimensional topological currents which can be
derived from the same field tensor kµν , and both these topological structures
are characterized by the φ-mapping topological numbers—Hopf indices and
Brouwer degrees. Furthermore, the spatial bifurcation of Mermin–Ho vortices
and the generation and annihilation of monopoles are also discussed.

PACS numbers: 03.75.Fi, 02.40.−k

1. Introduction

The φ-mapping topological current theory plays an important role in the study of condensed
matter physics [1]. In this paper, using this theory two important topological structures—
the Mermin–Ho vortices and the monopoles in three-component spinor BEC—are discussed
[2–7]. The physical system we study is the Bose condensates with three internal hyperfine spin
states: ψi = |F = 1,mF = +1, 0,−1〉 (i = 1, 2, 3). This is equivalent to a spin-1 quantum
fluid, which is governed by [2, 3]

H = ψ∗
i

(
− h̄ �∇2

2m
+ V − µi

)
ψi +

1

2
gρρ̂

2 +
1

2
gs Ŝ · Ŝ (i = 1, 2, 3). (1)

Here V is the external confinement potential such as an optical potential, and µi is the chemical
potential; ρ̂ = ψ∗

i ψi and Ŝa=ψ∗
i (Sa)ijψj respectively denote the particle number and spin

densities, with gρ = 4πh̄2

m

a0+2a2
3 and gs = 4πh̄2

m

a2−a0
3 (a0 and a2 are the scattering lengths).
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Introducing the vector wavefunction � as � = (ψ1ψ2ψ3)
T , the unit vector of hyperfine spin

is defined as

na = �†Sa�

�†�
(a = 1, 2, 3, nana = 1) (2)

where Sa are the spin matrices:

S1 = 1√
2


0 1 0

1 0 1
0 1 0


 S2 = 1√

2


0 −i 0

i 0 −i
0 i 0


 S3 =


1 0 0

0 0 0
0 0 −1




satisfying [Sa, Sb] = iεabcSc.

To discuss the Mermin–Ho vortices and the monopoles in three-component spinor BEC,
it is necessary to study the field tensor [8]

kµν = εabcn
a∂µnb∂νn

c (µ, ν = 0, 1, 2, 3) (3)

which is a topological term describing the non-uniform distribution of the hyperfine spin unit
vector �n at large distances in space. In this paper, by making use of our φ-mapping topological
current theory [1, 9–12], the Mermin–Ho vortices [6] and the monopoles [7, 8] in three-
component spinor BEC are discussed by studying this kµν tensor. It is pointed out that there
are different kinds of �n field distributions existing in space which lead to different topological
structures. To express these topological structures clearly, some other vector order parameters
are defined from �n. Using these new order parameters, it is revealed that there are respectively
two-dimensional and three-dimensional topological currents which can be derived from kµν

through the expression (3), and the above two kinds of topological structures are respectively
inhering in these two topological currents. It is pointed out that these two structures are
characterized by the φ-mapping topological numbers, Hopf indices and Brouwer degrees, and
their locations and motions can be rigorously determined. Moreover, in this paper the spatial
bifurcation of Mermin–Ho vortices and the generation and annihilation of monopoles are also
discussed.

2. The Mermin–Ho vortices in three-component spinor BEC

According to [13], in a field tensor kµν with inner structure (3), there exist Mermin–Ho vortices.
In the following, using the φ-mapping topological current theory, it is shown that there is a
two-dimensional topological current which can be derived from kµν , and the Mermin–Ho
vortex structure is just inhering in this topological current.

The kµν tensor can be re-expressed in an Abelian field tensor form [9, 14]

kµν = εabcn
a∂µnb∂νn

c = ∂µWν − ∂νWµ (4)

where Wµ is the Wu–Yang potential

Wµ = �e1 · ∂µ �e2. (5)

Here �e1 and �e2 are two unit vectors normal to �n; (�e1, �e2, �n) forms an orthogonal frame:

�e1 · �e2 = �e1 · �n = �e2 · �n = 0 �e1 · �e1 = �e2 · �e2 = �n · �n = 1. (6)

Consider another two-component vector order parameter in space: �φ = (φ1, φ2), which
resides in the plane formed by the unit vectors �e1 and �e2 and satisfies

ea
1 = φa

‖φ‖ ea
2 = εab φb

‖φ‖ (‖φ‖2 = φaφa; a, b = 1, 2). (7)
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It can be proved that the expression for �e1 and �e2 (7) satisfies the restriction (6). Obviously the
zero points of �φ are just the two-dimensional singular points of �e1 and �e2. Using the �φ field,
the Wu–Yang potential can be expressed as

Wµ = εab φa

‖φ‖∂µ

φb

‖φ‖ (8)

and the field tensor kµν is

kµν = 2εab∂µ

φa

‖φ‖∂ν

φb

‖φ‖ . (9)

According to [1, 9, 10], using ∂µ
φa

‖φ‖ = ∂µφa

‖φ‖ + φa∂µ
1

‖φ‖ and the Green function relation in

φ-space: ∂a∂a ln ‖φ‖ = 2πδ2( �φ) (∂a= ∂/∂φa), it can be proved that

εab∂µ

φa

‖φ‖∂ν

φb

‖φ‖ = εµνλρ2πδ2( �φ)Dλρ(φ/x) (a, b = 1, 2) (10)

where Dλρ(φ/x) = 1
2εµνλρεab∂µφa∂νφ

b. Then kµν can be expressed in a δ-function form

kµν = 4πεµνλρδ
2( �φ)Dλρ(φ/x). (11)

According to the φ-mapping topological current theory [12], the two-dimensional topological
current is defined as

K̃µν = 1

2π

1

2
εµνλρεab∂λn

a∂ρn
b = δ2( �φ)Dµν(φ/x) (12)

so it is revealed that there is a two-dimensional topological current existing in kµν:

kµν = 4πεµνλρK̃
λρ. (13)

Defining the spatial components of K̃µν as

J i = K̃0i (i = 1, 2, 3) (14)

we have

J i = δ2( �φ)Di(φ/x) = 1

8π
εijkkjk (15)

where Di(φ/x) = 1
2εijkεab∂jφ

a∂kφ
b is the Jacobian vector.

An important conclusion from (15) is

J i

{
= 0 (iff δ2( �φ) = 0, �φ �= 0)

�= 0 (iff δ2( �φ) �= 0, �φ = 0)
(16)

so it is necessary to study the zero points of �φ to determine the non-zero solutions of J i.

The implicit function theory shows that [15], under the regular condition Dµν(φ/x) �= 0, the
general solutions of

φa(x0 = t, x1, x2, x3) = 0 (a = 1, 2) (17)

can be expressed as

x1 = x1
j (s, t) x2 = x2

j (s, t) x3 = x3
j (s, t) (j = 1, 2, . . . , N) (18)

which represent the evolution surfaces of N isolated strings Lj in (3 + 1)-dimensional
spacetime with s being the string parameter. These topological string structures are just
the Mermin–Ho vortices.
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The spatial structure and the evolution of Mermin–Ho vortices can be discussed by making
use of the φ-mapping theory. Firstly, we study the spatial structure of these vortex lines by
fixing the time coordinate t. In δ-function theory [16], one can prove

δ2( �φ) =
N∑

j=1

βj

∫
Lj

δ3(�x − �xj (s))

|D(φ/u)|�j

ds (19)

where D
(

φ

u

)
�j

= (
1
2 εjkεmn

∂φm

∂uj

∂φn

∂uk

)
, and �j is the j th planar element transversal to Lj with

local coordinates (u1, u2). The positive integer βj is the Hopf index of φ-mapping, which
means that when the point �x covers the neighbourhood of the zero point �xj once, the vector
field �φ covers the corresponding region in φ-space βj times. Meanwhile, the direction vector
of Lj is [1, 9, 10]

dxi

ds

∣∣∣∣
�xj

= Di(φ/x)

D(φ/u)�j

∣∣∣∣
�xj

(20)

which leads to

dx1

dx3

∣∣∣∣
�xj

= D1(φ/x)

D3(φ/x)

∣∣∣∣
�xj

dx2

dx3

∣∣∣∣
�xj

= D2(φ/x)

D3(φ/x)

∣∣∣∣
�xj

. (21)

Therefore from (19) and (20) we find the inner topological structure of J i :

J i =
N∑

j=1

βjηj

∫
Lj

dxi

ds
δ3(�x − �xj (s)) ds (22)

where ηj is the Brouwer degree of φ-mapping: ηj = sgn D(φ/u)�xj
= ±1. From (22) one

can obtain the topological number of vortex line Lj

Qj = 1

2π

∫
�j

1

2
kij dxi ∧ dxj =

∫
�j

J i dσi = Wj (23)

where Wj = βjηj is the winding number of �φ around Lj . And the total topological number
on surface � is

Q =
∫

�

J i dσi =
N∑

j=1

Wj . (24)

Secondly, we discuss the evolution of the Mermin–Ho vortex lines. For simplicity we fix
the x3 = z coordinate and take the XOY plane as the cross section, and the intersection lines
between the evolution surfaces and the cross section are just the motion curves of vortices.
The velocity of the intersection point between Lj and the cross section is given by

vi
j = dxi

dt
= Di(φ/x)

D(φ/x)

∣∣∣∣
�xj

(i = 1, 2) (25)

where D0(φ/x) = εab∂1n
a∂2n

b,D1(φ/x) = εab∂2n
a∂0n

b and D2(φ/x) = εab∂0n
a∂1n

b.

Expression (25) just determines the motion of the j th Mermin–Ho vortex.
In the following, we will simply discuss the spatial bifurcation of these Mermin–Ho

vortices. From (21) it can be seen that, when the regular condition Dµν(φ/x) �= 0 (i = 1, 2, 3)

is satisfied, the direction of vortex line Lj at �xj is definite. When this condition fails, i.e.,
when

Di

(
φ

x

)
= 0 (i = 1, 2, 3) (26)
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at some points (marked as z∗i
j ) along Lj , the functional relationship between the coordinates

x1 and x3, or x2 and x3, is not unique in the neighbourhood of z∗i
j , and the direction of Lj

expressed by dx1/dx3 and dx2/dx3 in (21) is indefinite. Hence these very points z∗i
j are called

the bifurcation points of the Mermin–Ho vortex lines in three-dimensional space.
According to the φ-mapping theory, the Taylor expansion of the solution of (17) in the

neighborhood of z∗i
j can be generally expressed as A

(
x1 − z∗1

j

)2
+ 2B

(
x1 − z∗1

j

)(
x3 − z∗3

j

)
+

C
(
x3 − z∗3

j

)2
+ · · · = 0, where A,B and C are constants [1, 10]. This leads to

A

(
dx1

dx3

)2

+ 2B
dx1

dx3
+ C = 0 or C

(
dx3

dx1

)2

+ 2B
dx3

dx1
+ A = 0. (27)

The solutions of (27) give different branches of the vortex lines at the bifurcation points. In
the following four main cases are simply discussed [1]:

Case 1 (A �= 0). For � = 4(B2 − AC) > 0, from (27) we get two different spatial
directions at the bifurcation point: dx1

dx3

∣∣
1,2 = −B±√

B2−AC
A

. This is the intersection of two
vortex lines of different directions.
Case 2 (A �= 0). For � = 4(B2 − AC) = 0, we get only one direction at the bifurcation
point: dx1

dx3

∣∣
1,2 = −B

A
. This includes three sub-cases: (a) two vortex lines tangentially

contact, i.e. tangentially intersect; (b) two vortex lines merge into one line; (c) one vortex
line splits into two lines.
Case 3 (A = 0, C �= 0). For � = 4(B2 − AC) > 0, from (27) we have
dx3

dx1

∣∣
1,2 = −B±√

B2−AC
C

= 0,− 2B
C

. This includes two sub-cases: (a) three vortex lines
merge into one line; (b) one vortex line splits into three lines.
Case 4 (A = C = 0). (27) gives, respectively, dx1

dx3 = 0 , dx3

dx1 = 0. This case shows that
two curves normally intersect at the bifurcation point, which is similar to case 3.

It should be noted that, since the topological current J i defined in (14) satisfies the
continuity equation ∂iJ

i = 0, the sum of the topological charge of final vortex line(s)
should be equal to that of the initial line(s) at the bifurcation point for a fixed index j :∑

f βjf
ηjf

= ∑
i βji

ηji
, where ‘i’ stands for ‘initial’ and ‘f ’ stands for ‘final’.

3. The monopoles in three-component spinor BEC

In this section, it is shown that there is also a three-dimensional topological current which can be
derived from kµν when kµν is expressed within another different order parameter configuration,
and the monopoles are just inhering in this three-dimensional topological current.

The generalized winding number W can be obtained by integrating kµν on a closed surface
∂�, where � is a spatial volume and ∂� is its boundary. W is defined by the Gauss map
n : ∂� → S2 [9]

W = 1

8π

∫
∂�

n∗(εabcn
a dnb ∧ dnc) (28)

i.e.

W = 1

8π

∫
∂�

εabcn
a∂in

b∂jn
c dxi ∧ dxj = 1

8π

∫
∂�

kij dxi ∧ dxj (i, j = 1, 2, 3). (29)

In topology this means that when �x covers ∂� in the real space once, the unit vector �n will
cover S2 W times. This is a topological invariant and is called the degree of Gauss map.
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On the other hand, W is also the total topological charge of the point defects (i.e. the
singular points of �n) located in the volume �. Using Stokes theorem, we have

W = 1

8π

∫
�

εijkεabc∂in
a∂jn

b∂kn
c d3x =

∫
�

ρ d3x (30)

where the density of point defects is derived from kij ,

ρ = 1

8π
εijkεabc∂in

a∂jn
b∂kn

c = 1

8π
εijk∂ikjk. (31)

According to the φ-mapping topological current theory, the three-dimensional topological
current is defined as [12]

J µ = 1

8π
εµνλρεabc∂νn

a∂λn
b∂ρn

c (µ = 0, 1, 2, 3) (32)

so the density ρ is just the temporal component of J µ: J 0 = ρ. Therefore it is revealed that
there is a three-dimensional topological current which can be derived from kµν. It can be easily
seen that the topological current J µ is identically conserved: ∂µJ µ = 0, i.e.,

∂tρ + ∂iJ
i = 0. (33)

According to [1, 9, 10], it can be proved that

J µ = δ3(�ϕ)Dµ (ϕ/x) (34)

i.e., the temporal and spatial components of J µ are respectively

ρ = δ3(�ϕ)D (ϕ/x) J i = δ3(�ϕ)Di (ϕ/x) (35)

where ϕa is a three-component vector order parameter defined as

na = ϕa

‖ϕ‖ (‖ϕ‖2 = ϕaϕa, a = 1, 2, 3). (36)

Obviously the zero points of the �ϕ field are just the three-dimensional singular points of
the �n field. Dµ(ϕ/x) is the vector Jacobian: εabcDµ (ϕ/x) = εµνλρ∂νϕ

a∂λϕ
b∂ρϕ

c, and
D(ϕ/x) = D0(ϕ/x).

An important conclusion from (34) is

J µ

{= 0 (iff δ2(�ϕ) = 0, �ϕ �= 0)

�= 0 (iff δ2(�ϕ) �= 0, �ϕ = 0)
(37)

so it is necessary to study the zero points of �ϕ to determine the non-zero solutions of J µ. The
implicit function theory shows that [15], under the regular condition

D0(ϕ/x) �= 0 (38)

the general solutions of

ϕa(x0 = t, x, y, z) = 0 (a = 1, 2, 3) (39)

can be expressed as

x1 = x1
l (t) x2 = x2

l (t) x3 = x3
l (t) (l = 1, 2, . . . ,M) (40)

which represent the worldlines of M moving isolated singular points Pl . These singular points
are just the monopoles [8, 9].

In δ-function theory [16], one can prove that

δ3(�ϕ) =
M∑
l=1

βlηl

D(ϕ/x)�xl

δ3(�x − �xl) (41)
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where the positive integer βl is the Hopf index, and ηl is the Brouwer degree: ηl =
sgn D(ϕ/x)�xl

= ±1. From (35) and (41), we respectively obtain

ρ =
M∑
l=1

βlηlδ
3(�x − �xl) (42)

J i =
M∑
l=1

βlηlδ
3(�x − �xl)

Di(ϕ/x)

D(ϕ/x)

∣∣∣∣
�xl

(i = 1, 2, 3). (43)

The expression for ρ (42) just leads to that for the topological charges of monopoles.
Using (30) and (42) we get the total winding number on ∂� around the M monopoles:

W =
M∑
l=1

Wl =
M∑
l=1

βlηl (44)

where Wl is the winding number of �ϕ around the lth monopole Pl , which means that when
�x covers the boundary of the neighbourhood of Pl in three-dimensional space once, the unit
vector �n will cover S2 Wl times.

The expression for J i (43) leads to the description of monopole motion. The velocity of
the lth monopole Pl is defined as

vi
l = dxi

l

dt
= Di(ϕ/x)

D(ϕ/x)

∣∣∣∣
�xl

(i = 1, 2, 3) (45)

so the topological current can be written in the same form as the current density in
hydrodynamics:

J i =
M∑
l=1

βlηlδ
3(�x − �xl)

dxi
l

dt
. (46)

In the following, we will simply discuss the generation and the annihilation of these
monopoles at the limit points in spacetime [1]. The limit point

(
z∗i
l , t∗l

)
is defined as

D
(ϕ

x

)∣∣∣
(z∗i

l ,t∗l )
= 0 D1

(ϕ

x

)∣∣∣
(z∗i

l ,t∗l )
�= 0 (47)

or

D
(ϕ

x

)∣∣∣
(z∗i

l ,t∗l )
= 0 D2

(ϕ

x

)∣∣∣
(z∗i

l ,t∗l )
�= 0. (48)

Without loss of generality, we only consider the case (47). From expression (45) it can be seen
that, at the limit point

(
z∗i
l , t∗l

)
, the regular condition (38) fails and the velocity vi

l is indefinite:
dxi/dt = ∞ (i = 1, 2, 3). In order to determine the velocity of Pl at

(
z∗i
l , t∗l

)
, we can use

D1 (ϕ/x) instead of D (ϕ/x) to apply the implicit function theorem. In this case, we have

dt

dx1

∣∣∣∣
(z∗i

l ,t∗l )

= D(ϕ/x)

D1(ϕ/x)

∣∣∣∣
(z∗i

l ,t∗l )

= 0. (49)

Taking x1 as the parameter, we have a unique solution of (39) in the neighbourhood of
(
z∗i
l , t∗l

)
,

t = t (x1) x2 = x2(x1) x3 = x3(x1) (50)

and the Taylor expansion of (50) at
(
z∗i
l , t∗l

)
is

t − t∗l = 1

2

d2t

(dx1)2

∣∣∣∣
(z∗i

l ,t∗l )

(
x1 − z∗1

l

)2
(51)
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which is a parabola in the x1−t plane. From (51), we can obtain the two solution branches x1
I (t)

and x1
II(t) of (39), which give the evolution lines of two monopoles (respectively marked with

I and II): at the limit point
(
z∗i
l , t∗l

)
, if d2t/(dx1)2 > 0, we have the branch process of t > t∗,

which just describes the generation of two monopoles I and II; otherwise, we have the branch
process of t < t∗, which just describes the annihilation of two monopoles I and II [1]. It should
be pointed out that, since the conservation law (33) is satisfied, the sum of the topological
charges of these two monopoles is identically conserved at

(
z∗i
l , t∗l

)
: βlIηlI + βlIIηlII = 0.

4. Conclusion

In this paper, using the φ-mapping topological current theory, the Mermin–Ho vortices and
the monopoles in three-component spinor BEC are discussed by studying the field tensor kµν .
Noting that there are different kinds of �n field configurations existing in space, we respectively
define the vector order parameters �φ in section 2 and �ϕ in section 3; it should be stressed
that the difference between �φ and �ϕ just originates from the different configurations of vector
�n. Using these two new order parameters, it is revealed that there are two-dimensional and
three-dimensional topological currents which can be derived from kµν through expression
(3), and the above two kinds of topological structures are respectively inhering in these two
topological currents. It is shown that these two structures are characterized by the φ-mapping
topological numbers: Hopf indices and Brouwer degrees, and their locations and motions
can be rigorously determined. Moreover, in this paper the spatial bifurcation of Mermin–Ho
vortices and the generation and annihilation of monopoles are also discussed.

Finally, we point out that in this paper the vortex lines are treated as geometric lines, i.e.,
the width of a vortex line is zero; but in experiments, this width does not vanish. Then, in
experiments, since the Mermin–Ho vortices and the monopoles originate from the non-trivial
�n field distributions at large distances, the width of the ‘core’ of a Mermin–Ho vortex should
be larger than that of a velocity field vortex of a single condensate [1]. For this point and other
properties of these topological excitations, especially their energies, see [17] and references
therein.
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